Understanding the connection between ranking
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1 Introduction: The origins of the Page Rank
algorithm

In the early 1990s the internet was becoming popular and there was a need to
find an efficient way of searching and finding web pages for a specific query.
In [2] Larry Paige, Sergey Brin and Terry Winograd described an approach they
referred to as Page Rank. This became the basis of the now successful company
Google.

In this work, we will describe the problem of ranking web pages with an
example, then go on to describe the basis of the Page Rank algorithm before
explaining how it relates to the eigenvalue of a matrix.

2 Ranking internet pages

The internet can be thought of as a mathematical object called a graph [1].
We can use numpy to generate a random adjacency matrix A where:

1, if (z,7) is an edge
Ay = .
0, otherwise

>>> size = 10

>>> np.random.seed(0)

>>> A = np.random.choice((0, 1), size=(size, size))
>>> A

array([[0O, 1, 1, O, 1, 1, 1, 1, 1, 1],
(1, o, o, 1, 0, 0, 0, 0, O, 11,
(o, 1, 1, 0, 0, 1, 1, 1, 1, 0],
(1, o, 1, 0, 1, 1, 0, 1, 1, 0],
(o, 1, o, 1, 1, 1, 1, 1, 0, 11,
(o, 1, ¢, 1, 1, 0, 1, 0, 0, 11,
[+, o, 1, 0, 1, 0, 0, 0, 0, 0],
(1, 1, 0, 0, 0, 1, 1, 0, 1, 0],
(o, 1, o, 1, 1, 1, 1, 1, 1, 0],
[+, 1, 0, 0, 1, 0, O, 1, 1, 01D

Each row and column of A corresponds to a web page (so in our example
here the internet only has 10 web pages). We see that the first web page (the
first row of A links to all the other webpages except the fourth.



Python has a library for studying networks called networkx. It can be used
to create visualisations:

>>> G = nx.from_numpy_array(A, create_using=nx.DiGraph())
>>> plt.figure()
>>> nx.draw(G)

Figure 2 shows the corresponding network.

The Page Rank algorithm assumes that users are going to browse the internet
in a random fashion where they are equally likely to go from a page to any of
the other pages that it links to. The score against which it is ranked correspond
to the likelihood of being on a given page:

>>> nx.pagerank(G, alpha=1)
{0: 0.11988980099060496,
: 0.11337734639341283,
.09229073511280955,
.08488079369061019,
.12554165518523688,
.09448445809607922,
.09608526108105925,
.09314704994034195,
.09384213164925923,
.08646076786058658}
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3 Using linear algebra

We will normalise A to create a new matrix M such that the rows all add to
one (so each row give a probability of going to the next page):

>>> row_sums = A.sum(axis=1)
>>> M = A / row_sums[:, np.newaxis]
>>> np.round(M, 2)
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Using this, we can raise M to a large power to see the long run probability

given starting in any given page.

>>> np.round(np.
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We see that all the rows of M?2009000 are equal and actually correspond to
the values computed using networkx’s Page rank.
Interestingly, this set of probabilities can actually be obtained by finding the
right eigenvector of M7

>>> e_values, e_vectors
>>> np.real(np.round(e_vectors[:,0] / sum(e_vectors[:,01), 2))

np.linalg.eig(M.T)

array([0.12, 0.11, 0.09, 0.08, 0.13, 0.09, 0.1 , 0.09, 0.09, 0.09])

4 Conclusion

The first version of Google’s search engine was in fact based on a building block
of linear algebra and graph theory. There are some modifications that needed
to be done to deal with the fact that the internet is not always completely
connected, this corresponds to the alpha argument in the networkx function

above.
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